Salty Batteries

Wednesday 20th August 2014

Batteries are tremendous things - think of how they have changed our lives. Portable power enables us to do so much, or provide the energy to keep moving - if batteries can have a longer life, then all the better.

Cornell University chemical engineers have achieved a breakthrough in the race for safer, longer-lasting batteries to power the world’s automobiles, cell phones, computers and autonomous robots.

Adding certain halide salts to liquid electrolytes spontaneously creates nanostructured surface coatings on a lithium battery anode that hinder the development of detrimental dendritic structures that grow within the battery cell. The discovery opens the way potentially to extend the daily cycle life of a rechargeable lithium battery by up to a factor of 10.

The so-called dendrite problem has been troubling lithium battery technology for years. Over several charge/discharge cycles, microscopic particles called dendrites form on the electrode surface and spread, causing short circuits and rapid overheating.

Rechargeable lithium-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Consumers use these batteries every day for computers, cell phones, tablets and automobiles.

Computer makers and car manufacturers, who are striving for better batteries in electric cars, have battled metal deposits and dendrite formation on the anodes during repeated charge/discharge cycles, particularly at high rates and low temperature. At best the problem with dendrites can only be managed through careful design of the electrolyte and battery operating condition.

The Cornell team came up with a different idea. They went to “density functional theory” and “continuum analysis” – forms of chemical modeling – to examine the stability of metal electrodeposition for answers. This effort led to the conclusion that infusing simple liquid electrolytes reinforced with halogenated salt blends in a nanoporous host material holds the long-sought solution. The result: Lithium metal based batteries that exhibit stable long-term charge/recharge cycling at room temperature, with no symptoms of instability over hundreds of cycles and thousands of operating hours, the researchers reported.

Improving the efficiency of lithium in batteries couldn’t be happening at a better time; demand for the metal is expected to boom. Early in 2014, Tesla Motors, which makes a fully electric car, announced it would build a lithium battery “gigafactory.”

Dendritic deposits not only lead to safety challenges through the internal shorts they can cause over time, which may lead to overheating, but they also lower a battery’s efficiency.

The Cornell team have spent two years conducting this research, which was supported by the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy.

Picture of car batteries by Tennen-Gas reproduced under CCL. Source: Cornell University.

Categories: General, Reviews, Technology

Wednesday 20th August 2014


Add New Comment:

Comments

To Comment you must be a member of The ESA, please login or register to join

There are currently no comments, be the first to comment above.